Yellow Pine Antimony—Largest Domestic Supply of a Critical Resource
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What will numerous fluid inclusion analyses reveal
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metals, brine, and sulfur?
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Yellow Pine gold-antimony mineralization and nearby Eocene
volcanic rocks most well manifested by the Thunder Mountain
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Nl i i ;{mm-e (2) Determine paragenetic relationship of alteration assemblages Objectives: _ _ rocks and pre-Tertiary host rocks at Yellow Pine and if there
| £y B emsamaion (1) Characterize geometry of ore-controlling faults is possible post-mineralization eastward tilting of the Yellow
Fiscors Filing (negative flower structure?) to offer insight to ore Pine mineralizing system. Time 1 Time 2 Time 3
+ ) shihinen Relevance: characteristics of alteration minerals and time-spece relationships geometry at depth
Koy ot among alteration assgmblages can be a_pplied toward continuation of known (2) Determine if the Meadow Creek fault offsets the _ _ o _
smmlmmr" dEpOSItS and exploratlon for new depOSItS YG"OW Pine and Hanger Flat ore bOdies Relevance: Recently obtained (Glllerman, 2014) AI’/ Ar adularia Map of Thunder Mountain caldera with showing location of Yellow Pine
+ ] U wonconite dates indicate that gold mineralization at Yellow Pine formed at mining district (modified from Lewis and others, 2012)
about 50 Ma and presumed Eocene porphyry dikes are altered in the
Yellow Pine pit. Age and structural relations of nearby Eocene volcanic

rocks (Thunder Mountain) are poorly understood, but these magmas may have been source of heat, metals, and/or
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Map showing alteration types in the Yellow Pine pit
(Modified from Cooper, 1951). - c . . _r )
T 8B Map of Stibnite mining district showing geologic volatiles th_at_formed Y(_allow Pine d.ep03|ts. Emstmg_structural data for t_he '_I'hu_nder Mountqm.cald_era suggests
=2 | % units and mineralization in red (Midas Gold Inc., eastward tilting that might extend into the Yellow Pine and could explain district-scale variations in hydrothermal
W0 2012). Were the Yellow Pine and Hanger Flats
. . . A ore bodies once together and later offset by the
Background: Readily available alteration maps are +1 % Meadow Creek right-lateral(?) fault zone?
dated, so a detailed alteration study is overdue -— ALl
at and around the Yellow Pine pit. Alteration E : E,’EHQN Methods: Field examination and sampling of select parts of the Eocene volcanic rocks and contained mineral deposits
ingi ' ' After Cteper £1 5513 and of the Yellow Pine and other pits. Examination and sampling of select drill holes. Submittal of samples for
assemblage mapping IS a primary exploratlon tool. Yellow Pine pit and Stibnite roof Block model of a negative flower structure h o Toeis 1T fi P d A /39A i pling P
Cross section through Yellow Pine pit showing antimony, scheelite, and pendant geology (Stewart and highlighting coallescing fault geometry geochemical analysis, thin sections, an [/~Ar dating.
gold grades in ounces per ton (Modified from Cooper, 1951). others, in press). Note the surface at depth _ o _ _ _ _ _ _
fault geometry that suggests a Time-lapse burn test comparing industrial suits with (left) and without (right) flame retardants that include
antimony trioxide. Photograph courtesy of Thor, suppliers of AFLAMMIT® flame retardants for work wear.

negative flower structure.

Stibnite specimens with well-developed crystals from Wuling Antimony Mine, Jiangxi
Province, China. Photography courtesy of Robert Lavinsky (http://www.irocks.com).

http://geomaps.wr.usgs.gov/yellowpine/
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