Selected Bibliographic References

Crustal-Structure and Crustal-Strain Studies

Earthquake History, Faulting-Recurrence, Slip-Rate, and Paleoseismology Investigations

General Seismicity, Seismotectonic, and Faulting-Recurrence Studies, Southern California

Jennings, C.W., and Saucedo, G.J., 1994, Fault activity map of California and adjacent areas: California Division of Mines and Geology, Map #6, scale 1:750,000.

Baja California fault Studies

Cucamonga Fault Studies

Elsinore Fault Studies

Kennedy, M.P., 1977, Recency and character of faulting along the Elsinore fault zone in southern Riverside County, California: California Division of Mines and Geology Special Report 131, 12 p.

Weber, F.H. Jr., 1976, Preliminary map of faults of the Elsinore and Chino fault zones in northeastern Riverside County, California, showing accompanying features related to character and recency of movement: California Division of Mines and Geology Open-File Report 76-1 LA.

Imperial Valley Fault Studies (including Imperial Valley [1979] earthquake)

Klinger, R.E., and Rockwell, T.K., 1989, Flexural-slip folding along the eastern Elmore Ranch fault in the Superstition Hills earthquake

Los Angeles Basin Fault Studies

Zheng-Kang Shen, Jackson, D.D., and Ge, B.X., 1996, Crustal deformation across and beyond the Los Angeles basin from

Bryant, W.A., 1994, Surface fault rupture along the Homestead Valley, Emerson, and related faults associated with the M5.3 28 June

Highland Geotechnical Consultants, Inc, 1985, Geologic report West Bullion Mountain fault study (Job no. 6074-00), Marine Corps Air Ground Combat Center, Twentynine Palms, California, 14 p.

Rasmussen, G.S. and Associates, 1983, Engineering geology investigation, proposed 20-inch diameter potable water line route between reservoir No. 1 & equalizer tanks west of Deadman Lake,
Twentynine Palms Marine Corps Base, Twentynine Palms, California (Project No. 1843), 13 p.

Ross, T.M., 1992, Geologic and paleomagnetic constraints on the timing of initiation and amount of slip on the Rodman and Pisgah faults, central Mojave Desert, California, in Richard, S.M., ed., Deformation associated with the Neogene Eastern California Shear Zone, southwestern Arizona and southeastern California: Redlands, California, San Bernardino County Museum Special Publication 92-1, p. 75-77.

Skirvin, T.M., and Wells, S.G., 1992, Late Cenozoic structural and geomorphic evolution of the Old Dad Mountain and Cima volcanic field as related to the eastern California shear zone, in Richard,
S.M., ed., Deformation associated with the Neogene Eastern California Shear Zone, southwestern Arizona and southeastern California: Redlands, California, San Bernardino County Museum Special Publication 92-1, p. 78.

Newport-Inglewood Fault Studies

Bryant, W.A., 1988, Recently active strands of the Newport-Inglewood fault zone, Los Angeles and Orange Counties, California: California Division of Mines and Geology Open File Report OFR 88-14, scale 1:24,000.

Northridge Earthquake (1994) Studies

NOTE: Navigate to the U.S. Geological Survey’s online reports on the Northridge Earthquake (http://www-socal.wr.usgs.gov/north/index.html) for an extensive list of bibliographic citations.

Palos Verdes Fault Studies

San Andreas Fault Studies

Barrows, A.G., Kahle, J.E., and Beeby, D.J., 1976, Geology and fault activity of the Palmdale segment of the San Andreas fault zone, Los Angeles County, California: California Division of Mines and Geology Open-File Report 76-6LA, 30 p., scale 1:12,000.

Beeby, D.J., 1979, Geology and fault activity of the Lake Hughes segment of the San Andreas fault zone, Los Angeles County, California: California Division of Mines and Geology Open-File Report 79-2LA, 35 P., scale 1:12,000.

Bilham, Roger, and Williams, Patrick, 1985, Sawtooth segmentation and deformation processes on the southern San Andreas fault, California: Geophysical Research Letters, v. 12, no. 9, p. 557-560.

Clark, M.M., 1984, Map showing recently active breaks along the San Andreas Fault and associated faults between Salton Sea and Whitewater River-Mission Creek, California: U.S. Geological Survey Miscellaneous Investigations Map I-1483, scale 1:24,000.

Harden, J.W., and Matti, J.C., 1989, Holocene and late Pleistocene slip rates on the San Andreas fault in Yucaipa, California, using

Nicholson, C., 1996, Seismic behavior of the southern San Andreas fault zone in the northern Coachella Valley, California: comparison of

Rasmussen, G.S., 1982, Geologic features and rate of movement along the south branch of the San Andreas fault, San Bernardino, California, in Rasmussen, G.S., ed., Geologic hazards along the San Andreas fault system, San Bernardino-Hemet-Elsinore, California, field trip 4 of Cooper, J.D., compiler, Neotectonics in southern California: Geological Society of America, Cordilleran Section, 78th Annual Meeting, Anaheim, Calif., Volume and Guidebook, p. 109-114.

Ross, D.C., 1969, Map showing recently active breaks along the San Andreas fault between Tejon Pass and Cajon Pass, southern California: U.S. Geological Survey Miscellaneous Investigations Map I-553, scale 1:24,000.

Weldon, R.J., II, and Sieh, K.E., 1985, Holocene rate of slip and tentative
currence interval for large earthquakes on the San Andreas fault,
Cajon Pass, southern California: Geological Society of America

Weldon, R.J., II, and Springer, J.E., 1988, Active faulting near the Cajon
Pass well, southern California; implications for the stress
orientation near the San Andreas fault, in Zoback, M.D., Silver,
L.T., Henyey, Thomas, and Thatcher, Wayne, eds., Scientific
drilling near the San Andreas fault: Geophysical Research Letters,
v. 15, no. 9 (supplement), p. 993-996.

Williams, P.L., Sykes, L.R., Nicholson, C., and Seeber, L., 1990,
Seismotectonics of the easternmost Transverse Ranges, California:
relevance for seismic potential of the southern San Andreas fault:
Tectonics, v. 9, p. 185-204.

Wyss, M., and Lu, Z., 1995, Plate boundary by stress directions: Southern
22, p. 547-550.

San Diego Fault Studies

Anderson, John G., Rockwell, Thomas, and Agnew, Duncan Carr, 1989,
Past and possible future earthquakes of significance to the San

Hauksson, E., and Jones, L.M., 1988, The July 1986 Oceanside (ML= 5.3)
earthquake sequence in the continental borderland, southern
78, no. 6, p 1885-1906.

Canyon fault zone in San Diego, California: Journal of

hazard of San Diego revised: New evidence for magnitude 6+
Holocene earthquakes on the Rose Canyon fault zone: Fourth U.S.
National Conference on Earthquake Engineering, May, 1990

Magistrale, Harold, 1992, Seismicity of the Rose Canyon fault zone near
San Diego, California: Bulletin of the Seismological Society of

Rockwell, T.K., Keller, E.A., and Dembroff, G.R., 1988, Quaternary rate
of folding of the Ventura Avenue anticline, western Transverse
Ranges, southern California: Geological Society of America
Bulletin, v. 100, no. 6, p. 850-858.
San Jacinto Fault Studies

Rasmussen, G.S., 1982, Historic earthquakes along the San Jacinto fault zone, San Jacinto, California, in Rasmussen, G.S., ed., Geologic hazards along the San Andreas fault system, San Bernardino-Hemet-Elsinore, California, field trip 4 of Cooper, J.D., compiler, Neotectonics in southern California: Geological Society of America, Cordilleran Section, 78th Annual Meeting, Anaheim, Calif., Volume and Guidebook, p. 115-121.

Sharp, R.V., 1972, Map showing recently active breaks along the San Jacinto fault zone between the San Bernardino area and Borrego Valley, California: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-675, scale 1:24,000.

San Fernando Earthquake (1971) Studies

San Gorgonio Pass Earthquake Studies (including Coachella Valley)

Transverse Ranges Fault Studies (Eastern) (including Pinto Mountain Fault)

Dibblee, T.W., Jr., 1992, Geology and inferred tectonics of the Pinto Mountain fault, eastern Transverse Ranges, California, in Richard, S.M., ed., Deformation associated with the Neogene Eastern California Shear Zone, southwestern Arizona and southeastern California: Redlands, California, San Bernardino County Museum Special Publication 92-1, p. 28-31.

Hopson, R.F., 1994, Geomorphic evidence for Quaternary activity along the Pinto Mountain fault, Mojave Desert, southern California, in Murbach, D. and Baldwin, J., eds., Mojave Desert Annual Field Trip Guidebook #22-Martin Stout volume: Santa Ana, California, South Coast Geological Society, p. 197-207.

Transverse Ranges Fault Studies (Western)

Yeats, R.S., 1988, Late Quaternary slip rate on the Oak Ridge fault, Transverse Ranges, California: implications for seismic risk: Journal of Geophysical Research, v. 93, no. B10, p. 12,137-12,149.

Webb, T.H., and Kanamori, Hiroo, 1985, Earthquake focal mechanisms in the eastern Transverse Ranges and San Emigdio Mountains,
southern California, and evidence for a regional decollement:
737-757.

Yeats, R.S. and Rockwell, T.K., 1991, Quaternary geology of the Ventura
and Los Angeles basins, California: in Morrison, R.B., ed.,
Quaternary Nonglacial Geology: Conterminous U. S.: Geological

Whittier Earthquake (1987) Studies

Davis, T.L., Namson, J., and Yerkes, R.F., 1989, A cross section of the
Los Angeles area: seismically active fold and thrust belt, the 1987
Whittier Narrows earthquake, and earthquake hazard: Journal of
Geophysical Research, v. 94, p. 9644-9664.

Hauksson, E., 1988, The 1987 Whittier Narrows earthquake in the Los
Angeles metropolitan area, California: Science, v. 239, 1409-
1412.

earthquake sequence in Los Angeles, California: seismological
and tectonic analysis: Journal of Geophysical Research, v. 94, no.
B7, p. 9569-9589.

San Andreas Fault System as an Integrated system

Crowell, J.C., 1962, Displacement along the San Andreas fault, California:

Crowell, J.C., 1981, An outline of the tectonic history of southeastern
California, in Ernst, W.G., ed., The geotectonic development of
California (Rubey Volume I): Englewood Cliffs, New Jersey,
Prentice-Hall, Inc., p. 583-600.

Dickinson, W.R., 1997, Kinematics of transrotational tectonism in the
California Transverse Ranges and its contribution to cumulative
slip along the San Andreas transform fault system: Geological
Society of America Special Paper 305, 46 p.

Dillon, J.T., and Ehlig, P.L., 1993, Displacement on the southern San
Andreas fault, in Powell, R.E., Weldon, R.J., and Matti, J.C., eds.,
The San Andreas fault system: displacement, palinspastic
reconstruction, and geologic evolution: Geological Society of
America Memoir 178, p. 199-216.

Thesis and Dissertation Investigations

Corbett, E.J., 1984, Seismicity and crustal structure of southern California: Tectonic implications from improved earthquake locations:

